

الامتحان الوطني الموحد للبكالوريا الدورة العادية 2020 - عناصر الإجابة –

المملكة المغربية المملكة المغربية ورارة التربية الوضية ورارة التربية الوضية ورارة التربية الوضية والتكوين المماس المدين المماس المدين المماس المدين المماس المدين المماس المركز الوطني للتقويم والامتحانات 63043N I +3VWX*+

SSSSSSSSSSSSSSSSS

NR 26F

2	مدة الإنجاز	الرياضيات	المادة
4	المعامل	مسلك العلوم الاقتصادية ومسلك علوم التدبير المحاسباتي (باللغة الفرنسية)	الشعبة أو المسلك

	PARTIE I OBLIGATOIRE : Exercice1 et Exercice2			
الإجابة على التمرينين 1و2 إلزامية				
		Détail des	Observations	
		notes		
Exe	rcice n°1:(6pts)	,		
0.5	1. Calculer u_1 et u_2	0.25+0.25		
0.75	2.a. Récurrence	0.75		
0.75	2.b. $u_{n+1} - u_n = -\frac{3}{4}(u_n + 6)$	0.75		
0.25	2.c. $(u_n)_{n\in\mathbb{I}}$ est une suite décroissante.	0.25		
0.5	3. $(u_n)_{n\in\mathbb{N}}$ est une suite convergente.	0.5		
	4.		On tient compte	
0.25	4.a. v_0	0.25	de la rigueur du	
1	4.b. (v_n) est une suite géométrique de raison $\frac{1}{4}$	1	raisonnement et des efforts fournis	
0.5	4.c. v_n en fonction de n	0.5	10u1 ms	
0.5	5.a. $u_n = 3(v_n - 2)$	0.5		
0.5	5.b. $u_n = 6\left(\left(\frac{1}{4}\right)^n - 1\right)$	0.5		
0.5	5.c. $\lim_{n\to+\infty} u_n = -6$ (On admet le résultat même sans justification)	0.5		
	Jubilitudion)			

الصفحة 2 NR 26F

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 - عناصر الإجابة - مادة: الرياضيات - مسلك العلوم الاقتصادية ومسلك علوم التدبير المحاسباتي (باللغة الفرنسية)

Exercice	e n°2 :(10pts)		
Partie A			
	g définie sur $]0;+\infty[$ par $:g(x)=x-1+lnx$		
0.5	1. $g'(x) = 1 + \frac{1}{x}$ pour tout x de $]0; +\infty[$	0.5	On tient compte de la rigueur du raisonnement et des efforts fournis
0.5	2. Le signe de $g'(x)$ sur $]0;+\infty[$	0.5	
1	3. Calcul de $g(1)$ Le tableau de variations de g	0.25 0.75	
1	4. $g(x) \le 0$ sur $]0;1]$ $g(x) \ge 0$ sur $[1;+\infty[$	0.5 0.5	
Partie B			
	la fonction numérique f définie sur $]0;+\infty[$ par : $f(x) = \left(1 - \frac{1}{x}\right) \ln x$		On tient compte de la rigueur du
1.25	1. $\lim_{\substack{x \to 0 \\ x > 0}} f(x)$ L' interprétation géométrique du résultat.	0.75 0.5	
	2. $\lim_{x \to +\infty} f(x)$	0.5	
1.5	$\lim_{x\to +\infty} \frac{f(x)}{x}$	0.5	
	L' interprétation géométrique du résultat.	0.5	raisonnement et des efforts
1	3.a. $f'(x) = \frac{g(x)}{x^2}$ pour tout x de $]0; +\infty[$	1	fournis
1	3.b. Le signe de $f'(x)$ sur $]0;1]$ et sur $[1;+\infty[$	0.5+0.5	
0.75	3.c . $f(1)$ et le tableau de variations de f	0.25+0.5	
	4.		
1	4.a. Résolution graphique de l'inéquation : $f(x) \le x-1$	1	
0.5	4.b. Détermination graphique du nombre des solutions de l'équation : $f(x)=1$	0.5	

3

PARTIE II : Le candidat a exclusivement le choix de répondre : soit à l'exercice3 soit à l'exercice4

على المترشح (ة) أن يجيب إما على التمرين 3 وإما على التمرين 4

تنبيه هام إلى السيدات والسادة المصححات والمصححين: في حالة ما إذا أجاب مترشح(ة) على أسئلة من التمرين الثالث وأخرى من التمرين الرابع، تحتسب له أعلى نقطة إجمالية حصل عليها بعد مقارنة النقطتين الإجماليتين للتمرينين.

Exercice n°3:(4pts)

	La fonction numérique h définie par : $h(x)=e^x-x-1$		On tiont
0.5	1. $h'(x) = e^x - 1$	0.5	On tient compte de la
1	2. Le signe de $h'(x)$ sur \square	1	rigueur du raisonnement
1.5	3. Calcul de $h(0)$ Le tableau de variations de h	0.5 1	et des efforts fournis
1	4. $h(x) \ge 0$ sur \square	1	

Exercice n°4:(4pts)			
	Une primitive (à une constante près)de chacune des fonctions est :		
1	1. $F_1(x) = \frac{1}{2}x^2 + \sqrt{x}$ définie sur $]0; +\infty[$	1	On tient compte de la rigueur du
1	2. $F_2(x) = (\ln x)^2 + x^2$ définie sur $]0; +\infty[$	1	raisonnement
1	3. $F_3(x) = \frac{-1}{2(x^2+1)^2}$ définie sur	1	et des efforts fournis
1	4. $F_4(x) = \frac{1}{\ln x}$ définie sur]1;+ ∞ [1	